Plasma concentration of asymmetrical dimethylarginine and mortality in patients with end-stage renal disease: a prospective study

Carmine Zoccali, Stefanie M Bode-Böger, Francesca Mallamaci, Frank Antonio Benedetto, Giovanni Tripepi, Lorenzo Salvatore Malatino, Alessandro Cataliotti, Ignazio Bellanuova, Isabella Fermo, Jürgen C Fröhlich, Rainer H Böger

Summary

Background The plasma concentration of asymmetrical dimethylarginine (ADMA), an inhibitor of nitric-oxide synthase, which has been linked to endothelial dysfunction and atherosclerosis in the general population, is raised in patients with end-stage renal disease and could contribute to the high cardiovascular risk in patients with chronic renal failure. We investigated the relation between cardiovascular risk factors and plasma ADMA concentration in a cohort of haemodialysis patients (n=225), and tested the predictive power of ADMA for mortality and cardiovascular outcomes.

Methods Patients had standard dialysis three times a week. We accurately recorded cardiovascular events over a mean follow-up of 33·4 months (SD 14·6); these events were reviewed by a panel of physicians. We identified correlates of plasma ADMA by univariate and multivariate analyses.

Findings On univariate analysis, ADMA concentration in plasma was directly related to concentrations of fibrinogen and L-arginine in plasma, duration of dialysis treatment, and serum cholesterol concentration, and was inversely related to serum albumin concentration. On multivariate analysis, only plasma fibrinogen (p=0·0001) and serum albumin (p=0·04) concentrations were independently related to plasma ADMA concentration (multiple r=0·44, p=0·0001). 83 patients died, 53 (64%) by cardiovascular causes. In a Cox’s proportional-hazards model, plasma ADMA ranked as the second factor predicting overall mortality (hazard ratio 1·26, 95% CI 1·11–1·41, p=0·0001) and cardiovascular events (1·17, 1·04–1·33, p=0·008).

Interpretation In haemodialysis patients, plasma ADMA is a strong and independent predictor of overall mortality and cardiovascular outcome. These findings lend support to the hypothesis that accumulation of ADMA is an important risk factor for cardiovascular disease in chronic renal failure.

Lancet 2001; 358: 2113–17
See Commentary page 2096

Introduction

Cardiovascular disease is a major cause of death in patients with end-stage renal disease. The projected life expectancy of patients on dialysis is 20–25% that of the general population. Although patients with chronic renal failure commonly have associated diseases which have a high cardiovascular risk in themselves, such traditional risk factors account for only part of the very high cardiovascular morbidity and mortality in these patients. An expert panel from the USA National Kidney Foundation has recently identified the need for observational studies to ascertain the relation between established cardiovascular risk factors and cardiovascular outcomes and to identify new risk factors as a research priority.

Asymmetrical dimethylarginine (ADMA) is an endogenous inhibitor of nitric-oxide synthase. Concentrations of ADMA are related to endothelial dysfunction in hypercholesterolaemic individuals. ADMA and its biologically inactive stereoisomer—symmetrical dimethylarginine (SDMA)—are not excreted in patients with chronic renal failure, and concentrations of these substances in plasma are two to six times higher in uraemic patients than in healthy control individuals. ADMA concentrations in plasma are also raised in young hypercholesterolaemic patients with normal renal function, and correlate with intima media thickness in apparently healthy middle-aged individuals. Of note, ADMA concentrations are higher in dialysis patients with clinically manifest atherosclerosis than in those without atherosclerotic disease, which suggests that accumulation of ADMA might be an important cardiovascular risk factor in end-stage renal disease.

With this background in mind, we aimed to study prospectively the association between ADMA concentration in plasma, survival, and cardiovascular outcomes in a cohort of patients on chronic haemodialysis.

Methods

Patients

229 haemodialysis patients with end-stage renal disease (123 men, 102 women) who had undergone regular dialysis treatment for at least 6 months (median 42 months, IQR 21–109) without clinical evidence of circulatory congestion (defined as dyspnoea in addition to two of the following conditions: raised jugular venous pressure; bibasilar crackles; pulmonary venous hypertension or interstitial oedema on chest radiograph requiring admission to hospital or extra ultrafiltration; and ejection fraction <35%) were judged eligible for the study. These patients represented about 70% of the total number of patients undergoing dialysis at the four participating dialysis units.

Patients were being treated three times a week with standard bicarbonate dialysis (Na+ 138 mmol/L, HCO3– 35 mmol/L, K+ 1·5 mmol/L, Ca2+ 1·25 mmol/L, Mg2+ 0·75 mmol/L) by 1·1–1·7 m² dialysers with either
cupidron or semisynthetic membranes. Dry weight was targeted in every patient to achieve a normotensive oedema-free state. 82 patients were habitual smokers (mean 22 cigarettes/day, SD 16, range 1–80), and an equal number were on antihypertensive treatment—58 on monotherapy with angiotensin-converting enzyme inhibitors, angiotensin I antagonists, calcium-channel blockers, alpha-blockers, and beta-blockers, and 24 on double or triple therapy with various combinations of these drugs.

The protocol adhered to the ethical guidelines of our institutions, and oral informed consent was obtained from each participant. All studies were done on a midweek non-dialysis day, between 0800 h and 1300 h.

Procedures
Patients were followed up for a mean of 33.4 months (SD 14.6). During follow-up, cardiovascular events and deaths were accurately recorded and reviewed by a panel of five physicians. As part of the review process, all available medical information was obtained, and this included study and hospital records. In the case of death out of hospital, family members were interviewed by telephone to ascertain the circumstances surrounding death.

Blood sampling was done after 20–30 min of quiet resting in a semirecumbent position. Samples were stored in prechilled vacutainers containing edetic acid, placed immediately on ice, and centrifuged within 30 min at 4°C; plasma was stored at –80°C until required. Blood pressure was estimated by averaging all predialysis arterial pressure recordings taken the month before the study (total of 12 measurements—ie, three per week).

Concentrations of lipids, albumin, calcium, and phosphate in serum, and concentrations of fibrinogen and haemoglobin in plasma, were measured by standard methods in the clinical laboratory. C-reactive protein concentration was measured with a commercially available kit (Behring, Scoppito, L’Aquila, Italy). Homocysteine concentrations in plasma were measured by high-performance liquid chromatography.

Concentrations of L-arginine and dimethylarginine in plasma were measured by high-performance liquid chromatography, by precolumn derivatisation with o-phthalaldehyde, after removal of plasma samples with carboxylic acid solid-phase extraction cartridges (Varian, Harbor City, CA, USA). The coefficients of variation were 5.2% within-assay and 5.5% between-assay; the detection limit of the assay was 0.1 μmol/L. The median value of 0.95 μmol/L was considered as the upper limit of the normal range.

Concentrations of L-arginine and dimethylarginine in plasma were measured by high-performance liquid chromatography, by precolumn derivatisation with o-phthalaldehyde, after removal of plasma samples with carboxylic acid solid-phase extraction cartridges (Varian, Harbor City, CA, USA). The coefficients of variation were 5.2% within-assay and 5.5% between-assay; the detection limit of the assay was 0.1 μmol/L. The median value of 0.95 μmol/L was considered as the upper limit of the normal range.

Concentrations of L-arginine and dimethylarginine in plasma were measured by high-performance liquid chromatography, by precolumn derivatisation with o-phthalaldehyde, after removal of plasma samples with carboxylic acid solid-phase extraction cartridges (Varian, Harbor City, CA, USA). The coefficients of variation were 5.2% within-assay and 5.5% between-assay; the detection limit of the assay was 0.1 μmol/L. The median value of 0.95 μmol/L was considered as the upper limit of the normal range.

Concentrations of L-arginine and dimethylarginine in plasma were measured by high-performance liquid chromatography, by precolumn derivatisation with o-phthalaldehyde, after removal of plasma samples with carboxylic acid solid-phase extraction cartridges (Varian, Harbor City, CA, USA). The coefficients of variation were 5.2% within-assay and 5.5% between-assay; the detection limit of the assay was 0.1 μmol/L. The median value of 0.95 μmol/L was considered as the upper limit of the normal range.

Statistical analyses
Correlates of plasma ADMA were identified by univariate and multivariate analyses. The relations between ADMA concentration in plasma, all-cause mortality, and cardiovascular events (fatal and non-fatal) were analysed with the multivariate Cox’s proportional-hazards model. Variables included concentrations of L-arginine and SDMA in plasma, and traditional risk factors (age, sex, previous cardiovascular events, systolic blood pressure, smoking, diabetes, total cholesterol and LDL in serum, and fibrinogen concentration), emerging risk factors (C-reactive protein and homocysteine), and factors exclusive to end-stage renal disease (haemoglobin, calcium phosphate product [Ca×PO₄], albumin, duration of dialysis treatment, and fractional urea clearance). For

Table 1 shows the baseline characteristics of the patients. Median concentration of ADMA in plasma was 0.95 μmol/L, which we judged to be the upper limit of the normal range.

Table 1: Patients’ characteristics

<table>
<thead>
<tr>
<th>Cardiovascular risk factors</th>
<th>Total population (n=225)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systolic blood pressure (mm Hg)</td>
<td>139.4 (24-9)</td>
</tr>
<tr>
<td>Diastolic blood pressure (mm Hg)</td>
<td>75.9 (12-9)</td>
</tr>
<tr>
<td>Diabetes</td>
<td>15%</td>
</tr>
<tr>
<td>Smokers</td>
<td>25%</td>
</tr>
<tr>
<td>Hypercholesterolaemia</td>
<td>51%</td>
</tr>
</tbody>
</table>

Results
Patients who had multiple events, survival analysis was restricted to the first event. All calculations were done with a standard statistical package (SPSS for Windows, version 9.0.1).

Table 1 shows the baseline characteristics of the patients. Median concentration of ADMA in plasma was 0.95 μmol/L, which we judged to be the upper limit of the normal range.

Table 2: Cardiovascular events (fatal and non-fatal) and causes of death

<table>
<thead>
<tr>
<th>Cardiovascular events</th>
<th>Number of patients (n=225)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stroke</td>
<td>25 (11%)</td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td>18 (8%)</td>
</tr>
<tr>
<td>Heart failure</td>
<td>17 (8%)</td>
</tr>
<tr>
<td>Angina</td>
<td>15 (7%)</td>
</tr>
<tr>
<td>Transient ischaemic attack</td>
<td>8 (4%)</td>
</tr>
<tr>
<td>Mesenteric infarction</td>
<td>5 (2%)</td>
</tr>
<tr>
<td>Sudden death</td>
<td>4 (2%)</td>
</tr>
<tr>
<td>Major episodes of venous thrombosis</td>
<td>3 (1%)</td>
</tr>
<tr>
<td>Pulmonary embolism</td>
<td>2 (1%)</td>
</tr>
<tr>
<td>Retinal-artery thrombosis</td>
<td>1 (0-4%)</td>
</tr>
<tr>
<td>Peripheral-artery disease</td>
<td>1 (0-4%)</td>
</tr>
<tr>
<td>Total</td>
<td>120 (53%)</td>
</tr>
</tbody>
</table>

For personal use. Only reproduce with permission from The Lancet Publishing Group.
ADMA=asymmetrical dimethylarginine. *Denominator represents number of patients at risk. †Adjusted for age and sex.

Table 3: Hazard ratios by plasma ADMA concentration

<table>
<thead>
<tr>
<th>Concentration of ADMA (percentile)</th>
<th>Number of patients</th>
<th>Hazard ratio† (95% CI)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>All-cause mortality</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><50th</td>
<td>33/113 (29%)</td>
<td>1·00</td>
<td></td>
</tr>
<tr>
<td>50–75th</td>
<td>22/56 (39%)</td>
<td>1·72 (1·00–2·97)</td>
<td>0·05</td>
</tr>
<tr>
<td>>75th</td>
<td>28/56 (50%)</td>
<td>3·11 (1·83–5·27)</td>
<td><0·0001</td>
</tr>
<tr>
<td>Fatal and non-fatal cardiovascular events</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><50th</td>
<td>29/113 (26%)</td>
<td>1·00</td>
<td></td>
</tr>
<tr>
<td>50–75th</td>
<td>25/56 (45%)</td>
<td>2·13 (1·24–3·65)</td>
<td>0·006</td>
</tr>
<tr>
<td>>75th</td>
<td>27/56 (48%)</td>
<td>2·80 (1·63–4·81)</td>
<td>0·0002</td>
</tr>
</tbody>
</table>

ADMA=asymmetrical dimethylarginine.

2·52 µmol/L (IQR 1·58–3·85). 133 (59%) patients had ADMA concentrations above the upper limit of the normal range (>2·2 µmol/L). The median concentration of L-arginine and SDMA in plasma was 70·0 µmol/L (57·6–78·8) and 3·01 µmol/L (2·40–4·52), respectively.

On univariate analysis, concentration of ADMA in plasma correlated with the concentrations of fibrinogen (r=0·50, p=0·0001) and L-arginine (r=0·17, p=0·004) in plasma, duration of regular dialysis treatment (r=0·13, p=0·02), and concentration of cholesterol in serum (r=0·44, p=0·0001). In a multiple regression model, only concentrations of fibrinogen in plasma (r=0·29, p=0·0001) in serum (r=0·16, p=0·04) were inversely related to concentration of ADMA in plasma (multiple r=0·44, p=0·0001).

120 cardiovascular events (fatal and non-fatal) in 81 patients occurred during mean follow-up of 33·4 months (SD 14·6, table 2). Overall, 83 patients died, 53 (64%) from cardiovascular causes (table 2). Concentration of ADMA in plasma was higher in patients who died during follow-up (median 3·02 µmol/L, IQR 1·77–4·23) than in those who survived (2·26 µmol/L, 1·47–3·55, p=0·006). Similarly, concentration of ADMA in plasma was significantly higher in patients with cardiovascular events during follow-up (3·21 µmol/L, 1·87–4·47) than in those with no such events (2·21 µmol/L, 1·44–3·41, p=0·001). The overall risk of death and fatal and non-fatal cardiovascular events (adjusted for age and sex) was progressively higher from the 50th percentile onwards (table 3). In a Cox’s regression model, concentration of ADMA in plasma ranked as the second factor predicting all-cause mortality and cardiovascular outcome (table 4).

Discussion

Our findings show that ADMA is a stronger independent predictor of all-cause mortality and cardiovascular outcome in patients with chronic renal failure than some traditional risk factors. We observed a high occurrence of cardiovascular complications, with 81 (36%) patients having at least one cardiovascular event during mean follow-up of 33·4 months. This observation is in agreement with findings of other studies. Patients who died from cardiovascular complications had higher baseline ADMA concentrations than those who had no cardiovascular events. Our findings confirm the hypothesis from an echo-colour doppler study, that there is a relation between ADMA concentration and cardiovascular disease. Independent predictors for death in that study included high ADMA concentration, increasing age, male sex, diabetes mellitus, concentration of albumin in serum, and C-reactive protein. An increase by 1 µmol/L in concentration of ADMA in plasma was independently associated with a 26% increase in risk of all-cause mortality.

There is a high frequency of traditional cardiovascular risk factors, such as hypertension, hypercholesterolaemia, diabetes, and smoking, among patients with end-stage renal disease. However, concentration of ADMA in plasma was progressively higher in patients with previous cardiovascular events (table 3). There is a high frequency of traditional cardiovascular risk factors, such as hypertension, hypercholesterolaemia, diabetes, and smoking, among patients with end-stage renal disease. However, concentration of ADMA in plasma was progressively higher in patients with previous cardiovascular events (table 3).
ADMA at pathophysiologically high concentrations—similar to those seen in our study (3–15 μmol/L)—significantly inhibits vascular nitric-oxide elaboration.3,11 In individuals at high risk of cardiovascular disease or with overt atherosclerotic vascular disease, ADMA concentration is associated with degree of endothelial dysfunction and with the reduction in nitric-oxide elaboration.4,13 Kielstein and colleagues observed that mean concentration of ADMA in plasma was higher in patients with end-stage renal disease and atherosclerotic vascular disease than in those without vascular complications. These workers suggested that end-stage renal disease and atherosclerotic vascular disease could independently cause ADMA concentration to rise, which might predict atherosclerosis in people with normal renal function and in patients with end-stage renal disease. This conclusion was recently corroborated by Miyazaki and colleagues who showed that ADMA concentrations were significantly correlated to intima-media thickness of the carotid artery in 116 individuals without vascular or renal disease. ADMA might therefore be a useful marker for atherosclerosis in patients with end-stage renal disease and in the general population.

The pathophysiology of raised ADMA concentrations in end-stage renal disease could be multifactorial. In healthy human beings, ADMA is eliminated from the body by renal excretion and by metabolism to L-citrulline by dimethylarginine dimethylaminohydrolase (DDAH).3,17 Retention of DDAH in the body of patients with end-stage renal disease.

Increased ADMA concentrations prospectively determine cardiovascular and overall mortality in patients with end-stage renal disease. Since ADMA competes with L-arginine to bind to nitric-oxide synthase, supplementation with L-arginine in patients with end-stage renal disease could be useful for reduction of cardiovascular events. Findings of interventional studies suggest that acute L-arginine supplementation improves endothelial dysfunction in patients with end-stage renal disease11 and in patients with coronary-artery disease.27 Longer term L-arginine treatment has been shown to improve symptoms of cardiovascular disease in patients with peripheral atherosclerosis28 and in patients with coronary-artery disease.29 Case-control and prospective trials are needed to assess such treatment in larger groups of patients, and to assess the relation between ADMA and cardiovascular disease in the general population.

Contributors
C Zoccali and R Böger conceived the study and wrote the report. S Bode-Böger and J C Frölich were responsible for L-arginine, ADMA, and SDMA measurements and data analysis. F A Benedetto did all echo colour doppler collection and management. F A Neder did all colour doppler studies. L S Malatinio, I Bellanouva, and A Cataliotti did data collection and followed up patients. G Tripodi did the statistical data analysis with C Zoccali. I Fermo was responsible for homocysteine measurements. All investigators revised the report and agreed to its final form.
Acknowledgments
This study was supported in part by a grant from Hannover Medical School. We thank B Schulbert for technical assistance with aminoacid analyses, and the CRIIRED investigators who took care of the patients in this study: Giuseppe Enia, Saverio Parlongo, Sebastiano Cutrupi, Rocco Trippezi, Vincenzo Panuccio, and Carmela Marino (Centro di Fisiologia Clinica del CNR and Divisione di Nefrologia, Reggio Calabria, Italy); Francesco Rapisarda, Pasquale Fatuzzo, and Grazia Bonanno (Divisione Cliniciizzata di Nefrologia Chirurgica, Università di Catania); Giuseppe Smernara and Benedetta Stancanelli (Istituto di Medicina Interna e Geriatria, Università di Catania); Vincenzo Candelas and Carlo Labate (Servizio Dialisi di Melito Porto Salvo, Reggio Calabria); and Filippo Tassone (Servizio di Cardiologia Ospedale Morelli, Reggio Calabria).

References